THE ONLY MEGAWATT-SCALE CONTAINERIZED FLOW BATTERY

This presentation is copyrighted by UniEnergy Technologies. It may not be reproduced or circulated in any form without prior written consent.

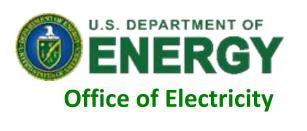
1. THE UET DIFFERENCE

2. UET DEPLOYMENTS (including Avista and SnoPUD)

3. UET COMPANY SUMMARY

4. APPENDIX

Harbour Pointe Distribution Circuit

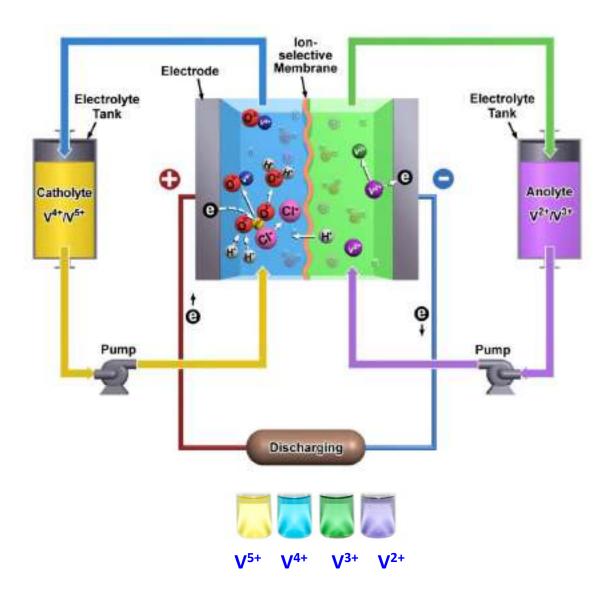

Mukilteo, WA (near Seattle)

UET's advanced vanadium flow batteries

operating at MW-scale since April 2014 on SnoPUD's grid

Copyright © 2016 UniEnergy Technologies

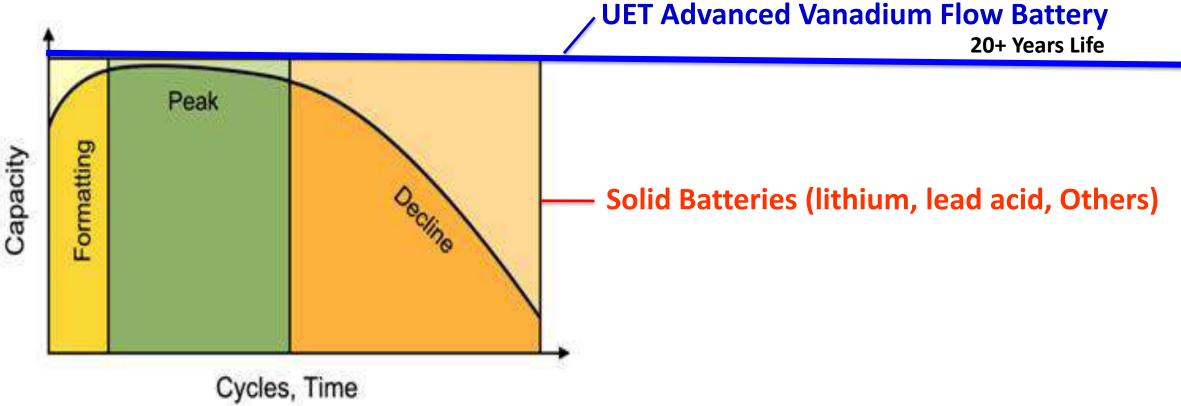
Advanced Vanadium Flow Battery



- New molecule developed at PNNL
- Improved & commercialized at UET
- <u>No limits</u> on:

number of cycles using 100% of stored energy

- <u>No degradation</u> for 20 years +
- <u>Non-flammable</u>



L J F T

No Degradation Unlike Solid Batteries such as lithium and lead acid

Non-Flammable Unlike Solid Batteries such as lithium and lead acid

UET Advanced Vanadium Flow Battery

FLAMMABILITY 0

* Hazardous Materials Identification System (HMIS) ratings

UET Systems Have Zero Flammability

Solid Battery Example: Lithium cobalt oxide

UET is Safest Grid-Scale Battery Available

Inherent Safety Features

- ✓ No thermal run away or explosion
- ✓ Minimal fire hazard
- ✓ Benign operating temperature
- ✓ Full system shutdown capability
- ✓ Benign chemistry

Passive Safety Features

- ✓ Primary containment
- ✓ Secondary containment
- ✓ Electrical safety
- ✓ Ambient pressure operation

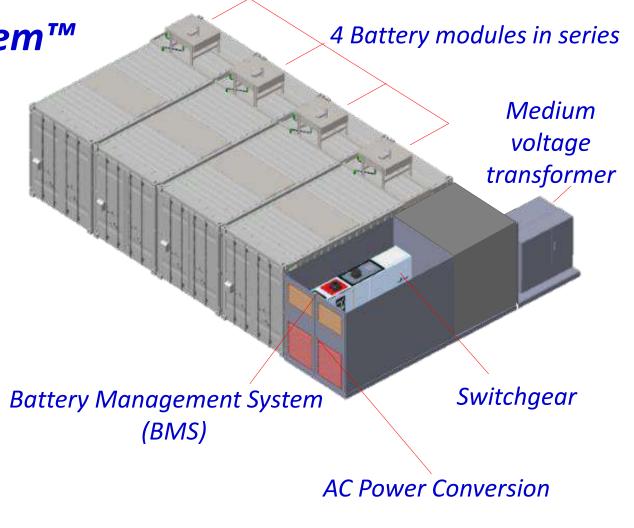
Active Safety Features

- Real-time status monitoring and automated response
- ✓ Hardware interlock loop
- ✓ Fire suppression (customer option)

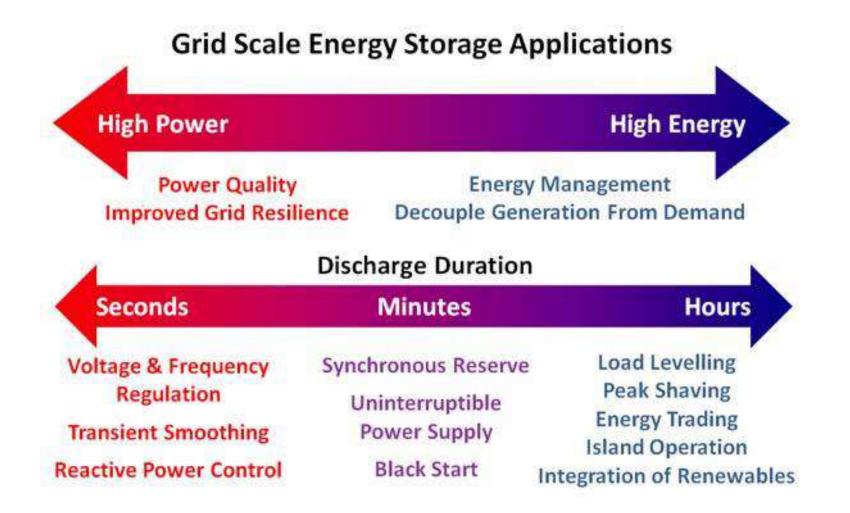
Operational Safety

- ✓ Onsite control
- ✓ Fault response
- ✓ Remote monitoring
- ✓ Proven operational safety
- ✓ Reuse and recycling
- ✓ Chemical handling procedures
- ✓ Spill handling procedures

First-of-its-Kind Containerization



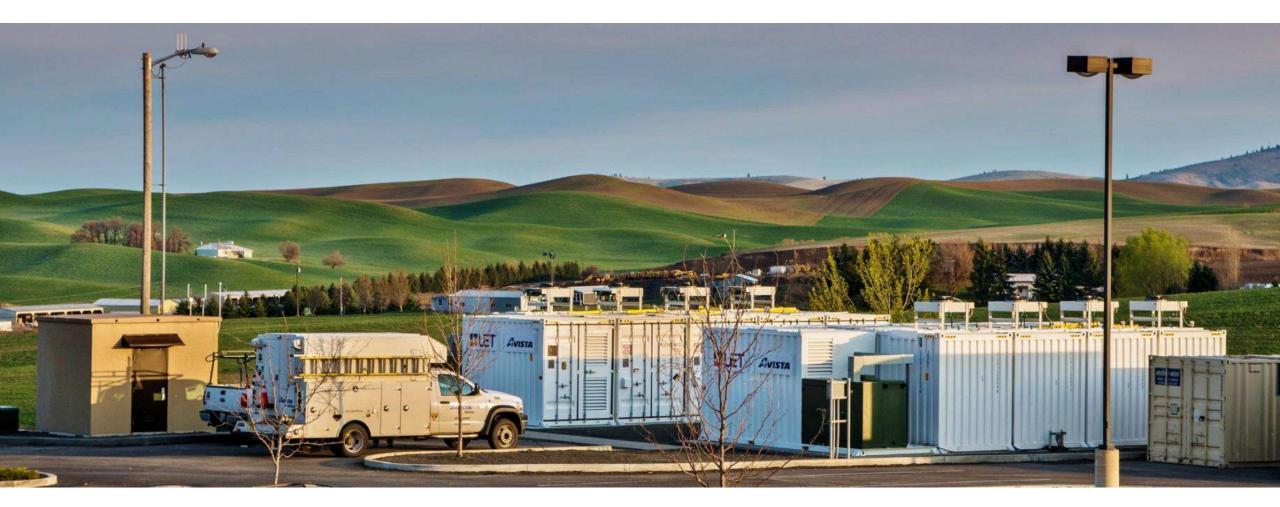
Uni.System[™]


□ <u>Fully</u> containerized –

no liquid between containers & built-in secondary containment

- AC conversion & passive cooling factory integrated & tested
- Modular system
- Readily transportable
- More rapid permitting
- "Plug and Play" deployment

Full Range of Power & Energy Applications



UET's Systems Provide All of the Above

Copyright © 2016 UniEnergy Technologies

UET DEPLOYMENTS

UET Deployment Schedule Through Q4 2016

- 9.45 MW / 38 MWh in total

1) Harbour Pointe Energy Storage Project (near Seattle, WA) May 2014 COD

- > 500kW/2MWh Uni.System[™], demonstrating fully commercialized system with >300MWh discharged to Snohomish PUD grid and providing voltage support to distribution circuit
- 2) Bosch/BWP Braderup-Tinningstedt Citizens Wind Park (Braderup, Germany) Sept 2014 COD
 - 250kW/1MWh, exceeding performance requirements (tested over 1.25MWh) and buffering intermittency of wind generation, shifting energy, and providing park power & voltage support
- 3) Avista Energy Storage Project (Pullman, WA) June 2015 COD
 - IMW/4MWh Uni.System, the largest capacity containerized flow battery in the world, gridconnected supporting distribution circuit and also customer-side islanding, black start, and seamless switching protecting Schweitzer Engineering Lab electronics manufacturing
- 4) Terna Energy Storage Project (Italy) Q3 2016 COD
 - > 500kW/2MWh Uni.System[™], part of 35MW procurement providing solar integration, voltage support, and other utility applications

(continued)

UET Deployment Schedule Through Q4 2016


- 9.45 MW / 38 MWh in total

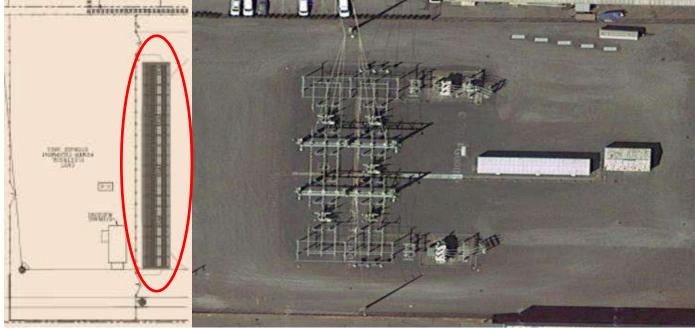
(continued)

- 5) Snohomish PUD Energy Storage Project (Everett, WA) Q3 2016 COD
 - 2MW/8MWh Uni.System at Everett Substation, providing balancing of wind procured as part of fossil-free policy in conjunction with hydro, supporting distribution circuit, and preparing for growth of rooftop solar & EV charging
- 6) Mission Produce (Oxnard, CA) Q4 2016 COD
 - 500kW/2MWh Uni.System at packing & ripening center, providing peak-shaving, energy savings, and back-up power without diesel generators, integrating 1MW solar array
- 7) City of New York Department of Citywide Administrative Services (NY, NY) Q4 2016 COD
 - > 100kW/500kWh ReFlex™ system at Bronx hospital, providing peak-shaving, energy savings, and back-up power
- 8) Energy Power Board (EPB) of Chattanooga (TN) Q4 2016 COD
 - > 100kW/500kWh ReFlex[™] system, part of US DOE Grid Modernization program (GMLC) program, including operational and control optimization and value analysis
- 9) More coming

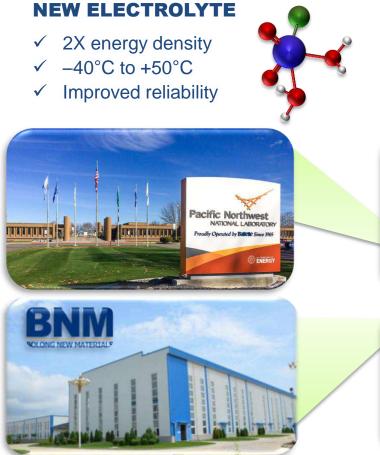
12

Utility Installation: AVISTA Project in Pullman, WA

VISTA


- 800kW/4h; 1MW_p; 4MWh_p Uni.System[™]
- Grid-tied & customer-side @ Schweitzer Engineering Labs
- Commissioned April 2015
- Use cases:
 - Grid-tied
 - Energy shifting
 - Grid reliability
 - Improved distribution system efficiency
 - Enhanced voltage control
 - Customer-side
 - Islanding
 - Black start
 - Seamless switching
- Project partners
 - > AVISTA
 - > UET
 - > WA State Dept. of Commerce
 - > PNNL

Utility Installation: Snohomish PUD Project in Everett, WA



- □ 2MW / 8.0MWh Uni.System[™]
- Everett Substation
- Deploying Q4 2016
- Use Cases
 - Energy shifting
 - Improved distribution system
 - Enhanced voltage control
 - Optimized utilization of energy storage
- Project Partners
 - SnoPUD
 - > UET
 - > 1Energy
 - > WA State Dept. of Commerce
 - > PNNL

UET COMPANY SUMMARY

ELECTROLYTE PRODUCTION

- \checkmark 1,324,000 ft² production facilities
- >1.5GWh/year
- / ISO9001:2008 Certified

PRODUCT ENGINEERING, MANUFACTURING & SERVICE

60,000ft² facility in Seattle

INNOVATION + PARTNERSHIPS + QUALITY

\$300MM INVESTED IN PORTFOLIO

FIELD EXPERIENCE

- ✓ ≈60MWh of UET and Rongke Projects
- ✓ German subsidiary **VANADIS POWER**

STACK PRODUCTION

- ✓ 108,000 ft² manufacturing facility
- Ramping to 300MW annual production capacity
- ✓ ISO9000/14000, GB/T28001 Certified

Copyright © 2016 UniEnergy Technologies

APPENDIX

Copyright © 2016 UniEnergy Technologies

Uni.System[™] Specifications

	2016 Uni.System™ (AC)		
Peak Power	600 kW _{AC} over 2 hours		
Nominal Rating	500 kW _{AC} over 4 hours		
Maximum Energy	2.2 MWh _{AC} over 8 hours		
Cycle and Design Life	Unlimited cycles over 20 year life		
Available State-of-Charge	100%		
Frequency Reg. Efficiency	75% _{AC}		
Peak Shaving Efficiency	70% _{AC}		
Response Time	<100 ms		
Voltage Range	465-1000 V _{DC}		
Max. Current	1500 A _{DC}		
Footprint	820 ft ² (41'W x 20'D x 9.5'H) ^a		
Ambient Temp.	-40°C to 50°C (-40°F to 122°F)		
Total Weight	170,000 kg		
Self Discharge	Max energy loss <2% ^b		

^aFive 20' standard size containers: four battery plus one power container; ^bSelf-discharge limited to only the residual volume of electrolyte left in stacks; no discharge of energy remaining in electrolyte tanks over time.

UET

Re.Flex[™] Specifications

	2016 ReFlex™ (AC)		
Nominal Rating	100 kW _{AC} /5 hours		
Peak Power	120 kW _{AC} (5 secs)		
Maximum Energy	500 kWh _{AC}		
Cycle and Design Life	Unlimited cycles over 20 year life		
Available State-of-Charge	100%		
Frequency Reg. Efficiency	75% _{AC}		
Peak Shaving Efficiency	70% _{AC}		
Response Time	<100 ms		
Voltage Range	400 _{AC} -10% to 480V _{AC} + 10%		
Footprint	160 ft ² (8'W x 20'D x 9.5'H) ^a		
Ambient Temp.	-40°C to 50°C (-40°F to 122°F)		
Total Weight	40,000 kg		
Self Discharge	Capped at <2% ^b		

100 kW system

^aA 20' standard size container;

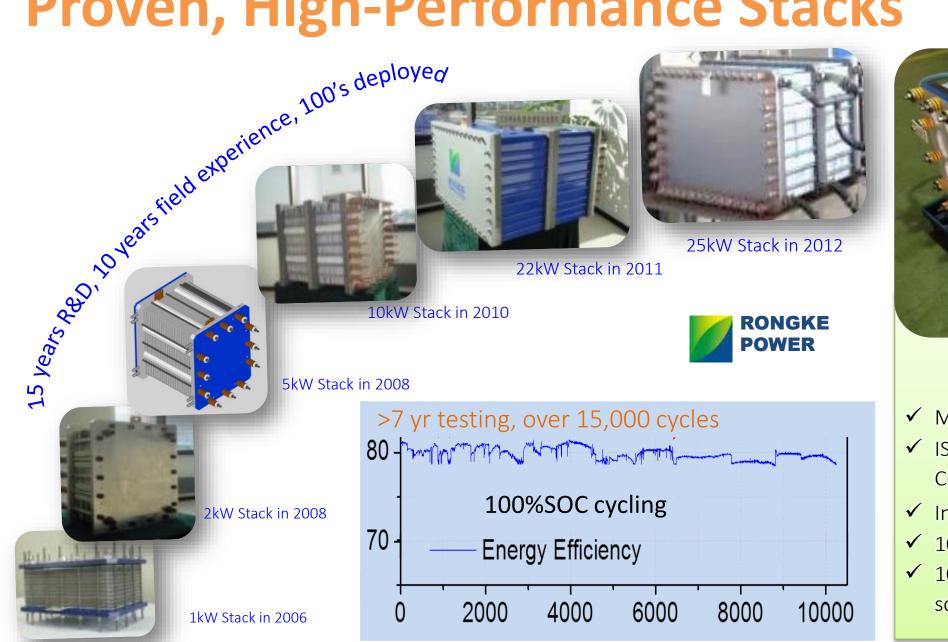
^bSelf-discharge limited to only the residual volume of electrolyte left in stacks; no discharge of energy remaining in electrolyte tanks over time.

100MWh Battery: UET vs. Tesla

	Tesla	UET
Footprint	2 acres	½ acre
Solar heat load	8MW	2MW
Operating temp	23°C	45°C
Substation prep	\$2.5MM	\$800k
# of SOC's (states of charge)	>16MM	200

UET capacity: 100% SOC access for 20y

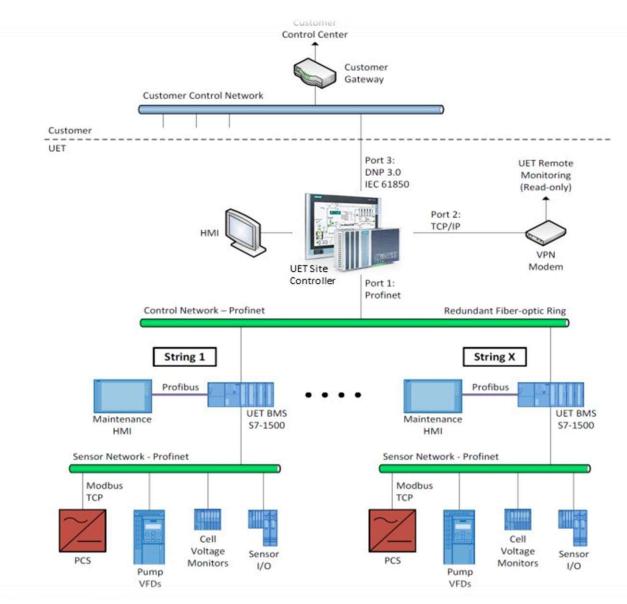
- Unlimited, no-fade cycles over 20 years
- Nonflammable; nonreactive; fire retardant
- -40°C to 50°C e'lyte temp
- Requires controlling only 2 SOCs per MWh


<u>TESLA</u> capacity: assuming 50% SOC access for 5y cycle life

- Tesla limits SOC access to ~50% for heavy cycling, increasing the required installed capacity
- *Risk of combustion, propagation and thermal runaway requires ample aisle space and eliminates stacking*
- Lower capacity <0°C and accelerated degradation >35°C
- 166,000 cells per MWh must be monitored and also controlled for temperature, voltage & current

http://www.teslamotors.com/sites/default/files/images/presskit/teslaenergy_utility1.jpg?617

Proven, High-Performance Stacks



31.5 kW Stack in 2014

- Mature, powerful stack
- ISO9000/14000, GB/T28001 Certified
- ✓ Individual cell voltage data
- 108,000 ft² facility
- ✓ 100MW annual stack capacity, scale up to 300MW in 2017

Robust Control System Architecture

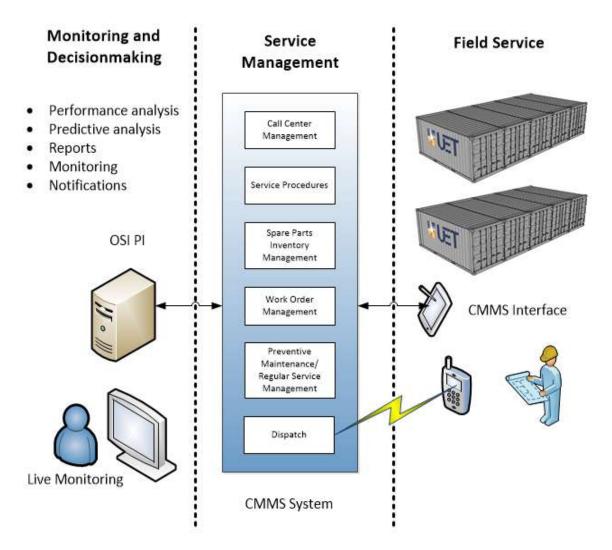
SIEMENS

Siemens Components

- Each string is controlled by a single
 Siemens PLC
- String consists of four batteries, the PCS, minimal cooling and communications
- □ The PLC is master of the PCS
- The site controller controls up to 100 strings using Siemens' new WinCC OA on an industrial PC

Value-Added Services

Applications Engineering and Analysis


- Storage asset configuration (and +PV)
- Single and multiple use-case benefit analysis
- Pre-engineered site configurations

Deployment

- Logistics and site engineering assistance
- System installation and commissioning

Maintenance

- Scheduled maintenance
- Performance reporting
- Performance warranty management
- Monitoring and Operating Analysis
 - > OSI PI Industry standard data historian
 - Real-time monitoring and notifications
 - Custom analysis and reporting such as asset utilization and use-case economic analyses

