Helicopter Aided Construction
(What to Know for Efficient and Cost-Effective Projects)

Shane Watson P.E.
ECI has designed hundreds of miles of lattice tower and steel poles lines that employed helicopter construction methods ranging from minimal use to hand dug foundations and 100% helicopter access.

We have been able to use our experience to work with contractors to both reduce costs and risks associated with helicopter construction.
Helicopter specific concerns

• Aggregation of work within a geographic area
• Safety
• Landing zone
• Fuel
• Dust abatement
• Rotor wash
• Noise
• Highway
• Airspace clearance
Support aspects

• Ground crews
 • Experienced crewmembers
 • Adequate and appropriate rigging
 • Understanding of safety
 • Appropriate radios

• Aerial Crews
• Engineering
• Environmental
Phases- Planning /Design and Construction

The **planning/design phase** should be started years before construction. Should include-

- basic line route
- structure types
- access and environmental restrictions

Construction phase should be allowed to modify aspects of the design as issues are discovered.
Concurrent Planning and Design

- Structure Locations
- Construction Staging
- Access
- Foundation types
- Geotech
Structure Locations

• Typical structure capacity, height, line clearance design

• Can we keep the structures close to access or away from environmental/cultural considerations?

• Soil types, foundations options?
• LiDAR survey is very helpful
• Ground survey of actual locations and critical clearance issues
• Helicopters can increase the range and effectiveness of survey crews
Route and Structure Access

Full Access
Route and Structure Access

Only tracked Equipment
Seasonal Access

No Heavy Equipment
• High profile golf course
• Limited acceptance of matting or construction traffic
Geotechnical Investigations

• Typically done using a truck mounted drill to collect samples from depths ~ 50’
• Tracked rigs and balloon tired ATV rigs are available
Alternative Geotech Methods

- Rock Mapping
- Seismic Refraction
- Historical data
- Others?
Foundation Options

- Direct embedded
- Drilled piers
- Hand-dug piers
- Grillages
- Spread footing
- Rock anchors
- Micro-piles
- Helical piers
Hand Dug Foundation Considerations

- Spoons and long-handled shovels typical for direct embedded poles
- Elbow room- less than 4ft diameter is not practical to build
- Soil type-
 - Rock can shrink foundation size
 - Water?
 - Casings required?
- Safety
 - Shoring inside excavation
 - Fire danger
Helicopters are used to:

- Haul personnel
- Generators
- Jackhammers
- Large compressors
- Survey equipment
- Rebar
- Concrete forms
- Hand tools
- Porta potty
- Emergency equip
- Lunch...
Construction Staging

- Good access by truck
- Close to the work area
- Assembly and storage of structures in condition ready to fly
- Allowances for fuel and water (fire fighting) storage
- Fuel
- Dust
- Rotor Wash
- Fire fighting
- Radio
- Matted landing area
- Safe approach
Concurrent Planning and Design

- Structure Locations
- Construction Staging
- Access
- Foundation types
- Geotech
Construction Phase -
Prepping for Concrete
Hauling Concrete

• Comparatively labor, time and flight intensive
• Typically requires a medium lift capacity helicopter with 3,000-5,000lb payload capacity at your project elevation
• Concrete weighs approximately 150lb/cu-ft, or 4,000lb/cu-yd
• Flights will typically haul ½-1cu-yd of concrete each, or **25 flights for a single 18cu-yd pier**
Concrete Considerations

• Increased set time (adding chemical delay)
 Try to get the entire pier placed prior to concrete setting

• Lightweight aggregate?
 125lbs/cu-ft vs. 145lbs/cu-ft
 Only a 540lb savings, or 4.5cu-ft additional capacity

• Small load volumes per truck
 Frequent changeover = fresh concrete

• Testing pre and post haul to determine changes of slump and air content

• Provisions and Engineering for unplanned joints
Setting Structures

Very dependent on the size of helicopter used. Usually a fast process, 3-5 picks per hour. Tower components should be previously assessed by the engineer and the helicopter company to determine suitability for flying and breakdown.
Wire Stringing

• Among the most common uses of helicopters in T-line construction
• Often a very economical method of stringing
• Pulling sock line
• Installing marker balls and bird diverters
• Clipping
• 2800ft double spans
• Large bundled conductor
• No mid-span access
Problem Solving, Inspection and Environmental
Visible Casting Numbers
Common Questions

• What kind of helicopter do I need?
 • Light
 • Medium
 • Heavy

• How much can be done in a day/week?
 • Concrete: ¾ cu-yd every 5-10 minutes
 • Structures: 10-50 picks per day
 • Stringing: 1-2 pulls/week at 3-5 miles each
QUESTIONS?